Search results for " geometric phase"

showing 6 items of 6 documents

On critical properties of the Berry curvature in the Kitaev honeycomb model

2019

We analyse the Kitaev honeycomb model, by means of the Berry curvature with respect to Hamiltonian parameters. We concentrate on the ground-state vortex-free sector, which allows us to exploit an appropriate Fermionisation technique. The parameter space includes a time-reversal breaking term which provides an analytical headway to study the curvature in phases in which it would otherwise vanish. The curvature is then analysed in the limit in which the time-reversal-symmetry-breaking perturbation vanishes. This provides remarkable information about the topological phase transitions of the model. The Berry curvature in itself exhibits no singularities at criticality, nevertheless it distingui…

Statistics and ProbabilityQuantum phase transitionPhysicsCondensed matter physicsHoneycomb (geometry)Statistical and Nonlinear PhysicsBerry connection and curvatureStatistics Probability and UncertaintyTopological phases of Matter geometric phase phase transition anyons and fractional statistical models quantum phase transitionsJournal of Statistical Mechanics: Theory and Experiment
researchProduct

GEOMETRY OF DISSIPATIVE PHASE TRANSITIONS

The main objective of this thesis is the development of geometrical methods for the investigation of critical phenomena. In particular, a novel approach based on the Uhlmann curvature is introduced for the investigation of non-equilibrium steady-state quantum phase transitions (NESS-QPTs). Equilibrium phase transitions fall invariably into two markedly non-overlapping categories: classical phase transitions and quantum phase transitions. NESS-QPTs offer a unique arena where such a distinction fades off. We propose a method to reveal and quantitatively assess the quantum character of such critical phenomena. We apply this tool to a paradigmatic class of lattice fermion systems with local res…

Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciQuantum phase transition. Non-equilibrium phase transition. Geometric phase. Information geometry. Quantum information. Quantum parameter estimation.
researchProduct

Haldane Model at finite temperature

2019

We consider the Haldane model, a 2D topological insulator whose phase is defined by the Chern number. We study its phases as temperature varies by means of the Uhlmann number, a finite temperature generalization of the Chern number. Because of the relation between the Uhlmann number and the dynamical transverse conductivity of the system, we evaluate also the conductivity of the model. This analysis does not show any sign of a phase transition induced by the temperature, nonetheless it gives a better understanding of the fate of the topological phase with the increase of the temperature, and it provides another example of the usefulness of the Uhlmann number as a novel tool to study topolog…

Statistics and ProbabilityPhase transitionGeneralizationFOS: Physical sciencesConductivity01 natural sciences010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsPhase (matter)0103 physical sciencesStatistical physics010306 general physicsCondensed Matter - Statistical MechanicsPhysicstopological insulatorQuantum PhysicsChern classStatistical Mechanics (cond-mat.stat-mech)Strongly Correlated Electrons (cond-mat.str-el)Topological phase of matter phase transition geometric phase quantum transportStatistical and Nonlinear PhysicsTransverse planeTopological insulatorStatistics Probability and UncertaintyQuantum Physics (quant-ph)Sign (mathematics)
researchProduct

Uhlmann curvature in dissipative phase transitions

2018

We study the mean Uhlmann curvature in fermionic systems undergoing a dissipative driven phase transition. We consider a paradigmatic class of lattice fermion systems in non-equilibrium steady-state of an open system with local reservoirs, which are characterised by a Gaussian fermionic steady state. In the thermodynamical limit, in systems with translational invariance we show that a singular behaviour of the Uhlmann curvature represents a sufficient criterion for criticalities, in the sense of diverging correlation length, and it is not otherwise sensitive to the closure of the Liouvillian dissipative gap. In finite size systems, we show that the scaling behaviour of the mean Uhlmann curv…

Quantum phase transitionPhase transitionSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciCritical phenomenaGaussianlcsh:MedicineFOS: Physical sciencesQuantum phase transitionCurvature01 natural sciencesArticle010305 fluids & plasmassymbols.namesake0103 physical sciencesUhlmann curvatureStatistical physics010306 general physicslcsh:ScienceQuantumCondensed Matter - Statistical MechanicsPhysicsQuantum PhysicsMultidisciplinaryStatistical Mechanics (cond-mat.stat-mech)lcsh:RUhlmann geometric phaseFermionDissipative systemsymbolslcsh:QQuantum Physics (quant-ph)
researchProduct

Geometry of quantum phase transitions

2020

In this article we provide a review of geometrical methods employed in the analysis of quantum phase transitions and non-equilibrium dissipative phase transitions. After a pedagogical introduction to geometric phases and geometric information in the characterisation of quantum phase transitions, we describe recent developments of geometrical approaches based on mixed-state generalisation of the Berry-phase, i.e. the Uhlmann geometric phase, for the investigation of non-equilibrium steady-state quantum phase transitions (NESS-QPTs ). Equilibrium phase transitions fall invariably into two markedly non-overlapping categories: classical phase transitions and quantum phase transitions, whereas i…

Quantum phase transitionPhysicsPhase transitionQuantum PhysicsDissipative phase transitions Geometric phase Quantum geometric information Quantum metrology Quantum phase transitionsStatistical Mechanics (cond-mat.stat-mech)010308 nuclear & particles physicsCritical phenomenaGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesTheoretical physicssymbols.namesakeGeometric phase0103 physical sciencesQuantum metrologyDissipative systemsymbols010306 general physicsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)QuantumCondensed Matter - Statistical Mechanics
researchProduct

Vacuum induced spin-1/2 Berry's phase.

2002

We calculate the Berry phase of a spin-1/2 particle in a magnetic field considering the quantum nature of the field. The phase reduces to the standard Berry phase in the semiclassical limit and eigenstate of the particle acquires a phase in the vacuum. We also show how to generate a vacuum induced Berry phase considering two quantized modes of the field which has a interesting physical interpretation.

PhysicsQuantum PhysicsCondensed matter physicsField (physics)Phase (waves)General Physics and AstronomySemiclassical physicsFOS: Physical sciencesVacuum Geometric phaseNonlinear Sciences::Chaotic DynamicsQuantization (physics)Geometric phaseQuantum mechanicsQuantum theoryBerry connection and curvatureQuantum field theorySpin (physics)Quantum Physics (quant-ph)Physical review letters
researchProduct